
 
 
 
 

Lecture 5. Energetics and Dynamics of Biological Systems 

 

Membrane Transport and Membrane Potential 

 

The living cell and its internal compartments maintain a particular 

electrolyte state which on the one hand guaranties constant 

conditions for all enzymatic processes, whilst on the other hand, it 

acts as an accumulator of electrochemical energy. This requires a 

complicated system of transporters in the membranes, which are 

particularly specialized and precisely controlled by a system of 

interactions. Furthermore, a number of receptor proteins transform 

external signals to internal information by modification of their 

transport properties. In a highly specialized way, nerve and muscle 

cells used the accumulated electrochemical energy for processes of 

excitation. In this chapter we will concentrate just on transport of 

ions with regard to transport of metabolites. 

Numerous experimental investigations indicate an enormous 

variety of transporters even in a single cell. This research during the 

second half of the last century was supported strongly by the 

introduction of radioactive isotopes, later on by fluorometric 

methods and especially by the use of patch-clamp measurements. In 

the last decades, our knowledge on the molecular mechanisms of 

these transporters and their control has developed rapidly thanks to 

studies involving X-ray crystal analyses, and various high-resolution 

functional measurements. 

 

Channels and Pumps: The Variety of Cellular Transport 

Mechanisms 

 

Figure 3.25 illustrates a functional classification of various types of 

ion transport mechanisms in the membrane of cells and organelles. 

The differentiation between pores and channels is rather unclear. 

Mostly the term “pore” is used to denote larger membrane openings 

with low selectivity, which are for example produced by electric 

pulses (electric break down, see Sect. 3.5.5) or by other influences. 

In contrast “channels” are protein transporters, which are 

characterized by a certain selectivity. In any case, fluxes through 

these kinds of transporters are governed by the laws of 

electrodiffusion. 



Another type of passive transporters is so-called carriers or porters transporting
simultaneously two or more ions in a well-defined stoichiometric relation. Such

stoichiometrically coupled fluxes are called co-transports. There are two kinds of

co-transport systems: In the case of the symport, a strongly coupled flux of two

species in the same direction occurs. An example of this could be a complex that

simultaneously transfers one Cl� and one K+ ion through the membrane in the same

direction. In the same way, transport of an ion could be coupled to an uncharged

molecule, like glucose. An antiport, in contrast to this, is a system simultaneously

transporting two ions with identical charges in opposite directions, for example one

K+, against one H+.

Co-transport systems are electroneutral, if an equal number of charges is

transported, either of opposite sign in the case of a symport, or of the same sign in

antiports. In this case the flux does not depend directly on electric field conditions. It

is electrically silent, i.e., it cannot be identified by electrophysiological methods. In

cases of unequal charge transporters, an electrical current will be the result of the

transport. We will call this type of process rheogenic, i.e., “current producing.”
Rheogenic co-transport processes can be recognized by their electrical conductivity,

a property which they have in common with simple diffusion processes. They can be

controlled by electric fields, especially by the transmembrane potential.

An active transport is a sort of pump, transporting ions or even uncharged

molecules against their own chemical or electrochemical gradients. Therefore, it

is an “uphill transport,” using metabolic energy (DG, in Fig. 3.25). In most cases

these are so-called transport ATPases, using the energy of the hydrolytic reaction:

ATP ) ADP. Furthermore, ionic pumps are known which are driven by other

Fig. 3.25 Classification of various systems of ion transporters in biological membranes, including

particular examples
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sources of energy, such as for example decarboxylation, oxyreduction, or even the

quantum energy of light. Some of these mechanisms can also run in the opposite

direction. In chloroplasts and mitochondria, for example, ATP is synthesized by a

“downhill” proton flux (see Sect. 4.8.3, Fig. 4.36).

Active transport can also be rheogenic. In this case the transport directly induces

electric currents, like for example the Na-K-ATPase, transporting three charges

from the inside out, but only two in the opposite direction, or a Ca++-ATPase (see

Sect. 3.5.2, Fig. 3.35). Frequently such transports are also called electrogenicwhich
means: “generating an electrical membrane potential.” Looking at the terms

“rheogenic” and “electrogenic” accurately, they are however not identical. Even

an electro-neutral pump can be “electrogenic” if it produces a concentration

gradient of ions which subsequently generates a diffusion potential. Conversely, a

rheogenic pump may influence the transmembrane potential only if there is a

sufficiently high membrane resistance.

This leads to the differentiation between primary and secondary active

transporters. An example of a primary active transporter is the Na-K-ATPase,

where the uphill flux of ions is directly driven by a biochemical process. In contrast,

secondary active transporters exploit the energy already stored in the electrochemi-

cal gradient of one species to drive the uphill transport of another substrate. This

can be realized by various kinds of symporters or antiporters. As an example in

Figs. 3.25 and 3.26 the co-transport of Na+ with glucose is shown. It is “secondary

active,” because in fact the uphill glucose uptake is driven by the downhill Na+-flux

in a gradient, produced by the Na-K-ATPase. In a similar way fluxes of amino acids

are coupled with transport of Na+ or H+ ions.

The number of different transport paths in a single membrane can be rather high.

In Fig. 3.26 this is illustrated for the case of cells of a renal proximal tubule. It is

Fig. 3.26 Various types of

ion transporters in cells of

a renal proximal tubule and

in the paracellular space

(After Verkman and Alpern

1987)
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obvious that the fluxes are coupled with each other by the transmembrane potential

as well as by the concentrations of their common ions. Additionally, changes of fixed

charges inside the cell induced by internal pH changes need to be taken into account.

The existence of transporters where the participants have strongly fixed stoichi-

ometry forces us to rethink the requirement of flux electroneutrality which we

postulated in Sect. 3.3.3 (Eq. 3.170). Considering rheogenic symports, it is not

the electroneutrality of a single flux that is required, but rather the electroneutrality

of all fluxes in the membrane of a single cell together. The calculation of the

balance of charges and ions in a cell is therefore only possible by considering all

fluxes. This type of coupling can formally be calculated using the flux matrix as

discussed in Sect. 3.1.3.

The existence of co-transporters in a cell rather than simple diffusion processes

can be regarded as a form of optimization. Ionic transport, based on electrodiffusion,

strongly depends on the transmembrane potential. An alteration of the transmem-

brane potential would cause an immediate change of electrolyte fluxes in the whole

cell, and subsequently a shift in the internal concentration of all ions. In contrast, the

system of electroneutral co-transporters is independent of the transmembrane poten-

tial and will protect the cell against such disturbances.

Further Reading

L€auger 1991; Luckey 2008.

3.4.2 The Network of Cellular Transporters

If a cell were only a poly-electrolyte system without metabolically driven ion

pumps it would remain in a state of Donnan equilibrium. This means that there

would be a Donnan distribution of all mobile ions according to fixed charges, and as

a result, a Donnan osmotic pressure (see Sects. 3.2.4, 3.2.5). In the living cell

however, active transport systems driven by metabolic energy (Fig. 3.25) modify

this ionic composition, as shown schematically in the model of Fig. 3.4b. The living

cell therefore reaches a steady state, i.e., a stationary state of nonequilibrium in

general (see Fig. 3.6), and for particular ionic species.

This nonequilibrium state has manifold functions. In general the cell can be

regarded as a kind of electrochemical energy store which may be easily tapped.

This, for example, is the case in electrical membrane de- and repolarizations (see

Sect. 3.4.4). Furthermore, the nonequilibrium state of a system is the precondition

for its homeostatic regulation. This, by the way, is also the reason for the increased

temperature in homeothermic animals. The setting up of a concentration gradient of

ions across the membrane makes the cells able to control and regulate an intracel-

lular environment, which is the precondition of various cellular processes. In the

case of Ca-ATPase an effective signal system is established. This pump creates an

extremely low calcium level in the cytoplasm which is of the order of 104 times

lower than the concentration in the extracellular fluid. In this way an important
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signal transduction pathway is established, which can be triggered even by a

minimal increase in the Ca-permeability of the membrane. The cytoplasmic

Ca++-ions act as a second messenger, in a number of cellular functions.

What therefore are the immediate effects of ionic pumps on the cell?

– They control and regulate the internal ionic milieu. In this way, steep gradients

of the electrochemical potentials of particular ions are built up, essentially

without changing the total internal ionic concentration. The internal potassium

concentration of animal cells, for example, is usually much higher than the

external one. Simultaneously however, the sodium concentration is lower to

the same degree. The sum of both of these ions in the cytoplasm, taken together,

is nearly the same as in the external medium.

– In the case of rheogenic pumps, they directly induce transmembrane potentials.

In this case the pumps are called electrogenic.

– They can produce a direct osmotic effect changing the concentration of osmoti-

cally active substances.

– They can establish particular internal ionic conditions, controlling, for example,

the extremely low intracellular calcium concentration.

Some direct consequences of the active transport processes can be demonstrated

by the effects of stopping the pump through the use of specific inhibitors. In this

case effects can be observed like Donnan-osmotic swelling, internal pH shifts, an

increase in the internal calcium concentration, a change of transmembrane poten-

tial, etc. Mostly, using such inhibitors, the overall internal ionic conditions are

altered.

As an example, the system of transport processes in kidney tubule cells is

illustrated in Fig. 3.24. There are 13 different transport systems shown which

determine the cellular milieu and additionally five other fluxes between the luminal

and serosal surfaces of the epithelium across the paracellular gap. This picture in

fact is incomplete as, for example, Ca++ fluxes are not shown, and the diagram does

not include the intracellular organelles with their own transporters.

Using this example we will illustrate the interconnections of these transport

properties qualitatively, following for example one particular path: Transport

ATPases pump protons out of the cell, others decrease the internal sodium content,

and in the same way enrich the cytoplasm with potassium. Extruding positive

charges, both primary active transporters induce an inside negative transmembrane

potential. Simultaneously, an electrochemical sodium gradient was generated

which drives a sodium flux outside–in. This influx, however, is realized by a

glucose-sodium co-transporter and acts therefore as a secondary active transporter

for glucose entry. The glucose finally diffuses via its own concentration gradient on

the opposite side of the cell layer from the cytoplasm into the capillary.

All these manifold transporters occurring in a single cell respond to different

stimulants. Some of them become active only if a particular pH exists, others if the

internal calcium concentration was increased. There are voltage-sensitive

transporters responding to particular transmembrane potentials, or others that

respond to mechanical stress of the membrane or to minimal temperature changes
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(see Sect. 4.1). The electroneutral Na+H+ antiporter, which is present in most

animal cells, merits particular attention. Under physiological conditions, at neutral

pHi it is inactive. However, if the internal pH increases, it becomes activated. This

property qualifies it to be a volume-regulating system. This mechanism was

demonstrated in the case of lymphocytes. It has also been shown that this Na+ H+

antiporter can be activated by a multitude of substances including hormones,

growth factors, lectins, etc. These substances alter the above-mentioned pH thresh-

old. This seems to be an important control mechanism for the regulation of complex

biological phenomena.

Beside direct calculations of flux coupling, the equations of nonequilibrium

thermodynamics can be applied to describe the energy balance of primary and

secondary active transport. As an example the energy balance at steady state of the

above-mentioned Na+-Glucose symport will be evaluated. This is an example of a

steady-state system like that of Fig. 3.4b which is determined by the active transport

(JA) as well as by the passive flux (Ji). In Sect. 3.1.4 we introduced the dissipation

functionF ¼ sT (Eq. 3.64), which must be larger than 0. According to Eq. 3.64 for

our system it amounts to

F ¼ JAXA þ JiXi for: F>0 (3.180)

In our particular case the glucose uptake (JG) is driven by the passive influx of

sodium (JNa), driven by its electrochemical gradient. Corresponding to Eq. 3.180

this results in:

JGXG þ JNaXNa>0 (3.181)

If v equivalents of sodium ions are transported for each mole of glucose then:

JG ¼ nJNa (3.182)

Introducing this in Eq. 3.181 and considering that both fluxes are not equal to

zero, it follows that:

nXG þ XNa>0 (3.183)

respectively:

XNa>� nXG (3.184)

Let us now replace the forces (X) by the differences of the corresponding

chemical, resp. electrochemical potential (see Sect. 3.3.1), we obtain:

� nDmG<D~mNa (3.185)

Using Eqs. 3.33 and 3.41, and the conditions: DT ¼ 0 and Dp ¼ 0, we get:
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nRT ln
aiG
aeG

<� RT ln
aiNa
aeNa

þ FDc
� �

(3.186)

(where Dc ¼ ci � ce) and after rearrangement:

aiG
aeG

� �n
<
aeNa
aiNa

e�
FDc
RT (3.187)

This equation allows us to calculate the maximal rate of enrichment of glucose in

the cell that can be achieved for a given electrochemical gradient of sodium ions.

Assuming that the membrane potential of the cell is: Dc ¼ �50 mV, and the

relation of sodium ions: aNa
i/aNa

e ¼ 10 (T ¼ 300 K), it follows:

aiG
aeG

� �n
<69 (3.188)

If the fluxes are coupled 1:1 (v ¼ 1), this process gives a maximum enrichment

of glucose by a factor of 69, when the pump is performing optimally.

Similar calculations can be applied to primary active transports, i.e., those that

are driven by chemical reactions, for example transport ATPases. In this case in the

equation of the dissipation function (Eq. 3.180), the reaction rate (as a type of scalar

flux), and the chemical affinity of the energy supplying reaction (Eq. 3.75) must be

included.

The calculation of the intensity of a pump which is necessary to build up a

certain concentration gradient depends both on the coupling stoichiometry of the

fluxes and on the passive back flow. This means that not only the power of the pump

is responsible for the steady-state level achieved, but also the conductivity, resp. the

permeability of the considered substance, leading it to flow backwards. This is

illustrated in the scheme shown in Fig. 3.4b: the power of the pump must be higher

if a greater difference in the levels of the vessels is reached, and if the outflow

becomes faster.

Further Reading

Luckey 2008.

3.4.3 The Membrane Potential

As outlined in the previous section, the pumps lead to gradients of ion

concentrations and therefore accumulate electrochemical energy. Now we will

discuss how the cell generates an electrical membrane potential, using this

accumulated energy.
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First it is necessary to remember the general definition of electrical potential as

defined in Sect. 2.2.1. According to this, the electrical potential [c(x,y,z)] is a scalar
state parameter in three-dimensional space, similar to temperature (T) or pressure (p).
Mostly as a simplification the function c(x) is used to characterize the potential

along a line that runs perpendicularly through the membrane (Figs. 2.15, 2.48). As

the transmembrane potential (Dc) the potential difference is defined between two

points, one on the inside, the other on the outside of the membrane, each at a suitable

distance from it (Fig. 2.48). The sign of this difference results from its definition:

Dc ¼ ci � ce (3.189)

Note that terms such as Donnan potential, diffusion potential, Nernst potential,

are just expressions describing the mechanisms which can give rise to the electrical
transmembrane potential and do not refer in any way to different kinds of

electrical potentials that might exist simultaneously. In fact there is only one

electrical potential c(x,y,z, t) at a given point in the space (x, y, z), and at a given

time (t). In Fig. 2.48, the function c(x) illustrates this in a very simplified way. It

includes the transmembrane potential and the two surface potentials at both

boundaries.

We have already learned that processes of active transport can be rheogenic

(Fig. 3.25). If the so-far transported charges can be rapidly neutralized by other

fluxes, for example by Cl� exchange in the membrane of human erythrocytes, then

a rheogenic pump has no direct electrical consequences for the cell. If however, no

such short-circuit flux exists, the transported net charges build up a transmembrane

potential, and the rheogenic pump becomes electrogenic.
In any case, the Na-K-ATPase, occurring in nearly all cell membranes, generates

an electrochemical gradient of sodium and potassium. For most animal cells a

relation near 1:10 occurs for aiK>aeK and aiNa<aeNa. Chloride ions are distributed

mostly passively, according to the Nernst equation. This nonequilibrium distribu-

tion of the cations can lead to a diffusion potential which can be calculated by the

Goldman equation (Eq. 3.179) as follows:

Dc ¼ RT

F
ln
PCla

i
Cl þ PKa

e
K þ PNaa

e
Na

PCla
e
Cl þ PKa

i
K þ PNaa

i
Na

(3.190)

Even if the internal ion activities aiK and aiNa remain constant, the diffusion

potential (Dc) can vary widely because of changing permeabilities (Pi). The limits

of such variations can be easily obtained from Eq. 3.190:

For PK >> PNa, PCl Eq. 3.190 reduces to:

DcK ¼ RT

F
ln
aeK
aiK

(3.191)

and for PNa >> PK, PCl it follows:
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DcNa ¼
RT

F
ln
aeNa
aiNa

(3.192)

For these particular cases the Goldman equation (Eq. 3.190), therefore, reduces

to a Nernst equation (Eq. 3.112) which was derived for such kinds of semiperme-

able membranes. If the typical relations of activities for sodium and potassium, as

mentioned before, are inserted into Eqs. 3.191 and 3.192, then it is easy to

understand that DcK < 0 and DcNa > 0.

This situation is illustrated in Fig. 3.27. The electrochemical gradients of

potassium and sodium which are generated using metabolic energy can be consid-

ered as storage batteries, or electrical accumulators having opposite polarities.

The permeability characteristics of the ions are expressed in this model as

conductivities of the variable resistors, or potentiometers through which these

accumulators are discharged. If the resistance is low, then a large discharge current

would flow, and if the accumulator is not recharged continuously, it would soon be

empty. In fact, the permeabilities PNa and PK are usually so low that the electro-

chemical gradient of the living cell persists for hours or even days. The effective

membrane potential in this model is represented by the voltage difference across the

capacitor DcM. This capacitor represents the capacity of the membrane (see Sect.

2.3.6). If PNa and PK have about the same value, then DcM will be very small. If

they differ, a membrane potential will be established according to Eqs. 3.191 and

3.192.

Figure 3.27 demonstrates membrane potentials that can be induced in human

erythrocytes. In this case the Nernst potentials for potassium and sodium give the

limits of these possible shifts. They range approximately between �95 mV and

Fig. 3.27 An electrical circuit as a model illustrating the Na+-K+ diffusion potential of a cell as

the result of a sodium (DcNa), and a potassium (DcK) battery. In the lower part of the figure,

possible potential alterations are illustrated for the case of human erythrocytes in a solution

containing 145 mMNaCl and 5 mMKCL.K – DcK,V – valinomycin-induced diffusion potential,

M – potential of untreated erythrocytes corresponding to DcM, D – position of the Donnan

potential, Na – DcNa
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+65 mV. The actual membrane potential of human erythrocytes in vivo is found to

be �9 mV (M), and is only a little greater than the Donnan potential (D) which

would result if the cell achieved a thermodynamic equilibrium (see Fig. 3.19). If the

cells are treated with valinomycin, the membrane potential falls to about �35 mV

(V). Valinomycin is an ionophore that is rapidly incorporated into the membrane

causing a highly selective increase of potassium permeability. It will not reach the

limiting value of the Nernst potential of potassium, because the values of PCl and

PNa are not negligible, as was assumed for Eq. 3.191. However, it is shifted in this

direction.

Even if these types of potential alterations are possible without a significant

change of concentration profiles, they must in fact be accompanied by a certain

transmembrane shift of charges. It is easy to show that this charge flux is extremely

small. For this we calculate the charge transfer across the membrane capacitor,

which is required to adjust these potential differences (DcM in Fig. 3.27). Let us ask

the question: how many charges must be displaced in the cell membrane with a

specific capacity of 10�2 F m�2 (see Sect. 2.3.6) in order to generate a transmem-

brane potential DcM ¼ 0.1 V?

Equation 2.90 gives the corresponding relation for a capacitor. This enables us to

calculate the surface charge density (s) as a function of the transmembrane poten-

tial (Dc) and specific capacity (Csp):

s ¼ CspDc ¼ 10�3C m�2 (3.193)

This value can be converted into charge equivalents of ions, using the Faraday

constant (F):

s
F
¼ 10�3

9:65 � 104 � 10�8 charge equivalents �m�2

The resulting charge density, so far, is very small. Considering a certain geome-

try of the cell, for example a sphere, or in the case of a neuron, a cylinder, one can

easily transform this number into a concentration shift. The result will be a fully

negligible proportion of the amount of internal ions.

This example demonstrates a most important element in the functional arrange-

ment of the living cell: An ion pump driven by metabolic energy, accumulates

electrochemical energy by generating a concentration gradient of sodium and

potassium. This electrochemical energy can be converted into electrical energy

altering the membrane permeabilities (for example: PK and PNa). In this way a

wide-ranging control of the electric field in the cell membrane is possible. Even if

the shift of the membrane potential amounts to only some tenths of a millivolt, the

resulting variations of the field strength, sensed by the membrane proteins, are of

the order of millions of volts per meter (see Sect. 2.2.1)! It must be emphasized that

this control is possible without any sizeable input of energy and can be realized in

milliseconds. Such permeability changes can be induced by the cell itself as well as

by external influences.
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As mentioned before, there are many ion-selective transporters in the cell which

are controlled by internal calcium concentration, by internal pH, by mechanical

tension of the membrane, or by modifications of other parameters. Diffusion

potentials may also result from an interaction between the cell and specific drugs,

or may be triggered locally through mechanical contacts with surfaces or particles,

such as for example viruses. These alterations of membrane potentials caused by

local permeability changes can induce electric potential differences and therefore

electric fields not only in the x-direction, perpendicular to the membrane surface,

but also in the y-, z-direction, i.e., in the plane of the membrane (see Sect. 3.5.2).

In the next section we will consider the action potential of nerve cells as a

classical example of the feedback loop between an electric field and ionic perme-

ability in more detail. Recently, the interest in the transmembrane potential of the

cell as a regulator of cellular events has greatly increased. This concerns the size of

the membrane potential in various cells, as well as its time dependence. Although

action potentials have a special significance in signal transfer of neurons, they occur

also in many other cells.

Although opening to particular transporters or integration of specific channels in

the membrane may always modify the membrane potential by generating diffusion

potentials, the resting potential of many cells is exclusively generated by electro-

genic pumps. In this case transmembrane potentials appear to be independent of

external potassium concentrations. Inhibition of the pumps in this case immediately

leads to changes of Dc (see Bashford and Pasternak 1986).

In Fig. 3.28 correlations of membrane potential and the state of various animal

cells are illustrated. In contrast to cells with active proliferation like cancer cells or

cells of embryos, indicating a transmembrane potential between �10 and �30 mV,

nondividing cells, like neurons or skeletal muscle cells show membrane potentials

between�70 and 90 mV. The transmembrane potential of cells which pass through

a state of proliferation falls before mitosis takes place. It is not yet clear whether this

reflects a regulatory mechanism of the cell, or whether it is only a phenomenon that

accompanies such a mechanism.

In fact, in many cases alterations in the electrical field of a membrane seem to be

of functional importance. The following mechanisms may cause this:

– The transverse component of an electrical field in the membrane may affect the

functional state of intrinsic molecules. Dipole orientations for example, may

modify the function of transport or other functional proteins, phase transitions in

the lipid components of the membrane can be influenced by the field, or a

transversal shift of small charged molecules can occur.

– The lateral component of the field can cause a displacement in its mosaic

structure. This could lead to a local change in the mechanical properties of the

membrane causing vesiculation, spike formation, etc.

– The electrical field can influence local ionic concentrations, as well as local pH

values in close proximity to the membrane which, in turn, could affect transport

processes, biochemical reactions at the membrane surface as well as receptor

properties.
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Further Reading

Glaser 1996; Starke-Peterkovic et al. 2005; Wang et al. 2003.

3.4.4 The Action Potential

In the previous section we described the possibility of cells to use the electrochemical

gradient of potassium and sodium ions which is built up by active transport, to trigger

various amounts of membrane potential simply by changing their permeabilities. This

mechanism is expressed most efficiently in nerve and muscle cells. This was the

reason why excitation phenomena were detected first in these cells.

Particular progress was achieved following the rediscovery of the giant axon of

the squid in 1937 by John Zachary Young, and its subsequent introduction for

biophysical measurements by Kenneth Stewart Cole. The use of these giant axons

Fig. 3.28 The transmembrane potential of normal animal cells (right) and transformed tumor

cells (left). It can be seen that proliferating cells indicate a membrane potential which is above the

threshold value of�37 mV. Cells transiently arriving at the proliferating state lower their absolute

potential. The human erythrocyte, as a non-nucleated cell with special physiological functions

appears to be an exception (Drawn according to values from Bingeli and Weinstein 1986)
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with a diameter up to 1 mm, have made it possible to apply the voltage-clamp

technique to determine the ionic currents during the nerve impulse in extensive

experiments by Alan Lloyd Hodgkin and Sir Andrew Fielding Huxley. In this

technique, the electrical conductivity of the membrane is determined at various

fixed transmembrane potentials, generated by microelectrodes. Recently, using

patch-clamp techniques it has been possible to investigate the kinetics of these

permeability alterations in extremely small membrane areas.

The action potentials of various nerve and muscle cells as illustrated in Fig. 3.29,

can be qualitatively explained using the electrical scheme of Fig. 3.27 which was

discussed in the previous section. The nonexcited nerve shows a very low sodium

permeability (PNa), its resting potential therefore, was determined chiefly by the

diffusion potential of potassium which is negative inside-out. After excitation the

membrane permeability for ions increased abruptly, whereas the sodium perme-

ability rose quicker than that of potassium. For a short time therefore, the diffusion

potential of sodium becomes dominant. This has the opposite polarity to the

potassium potential which explains the spike of the action potentials.

As we demonstrated in the previous section the amount of charges that are

needed for this kind of depolarization is extremely low. This was checked by flux

measurements in excited nerves. During the generation of an action potential,

therefore, no significant alterations of the internal ion concentration occur.

Fig. 3.29 Examples of various action potentials (After Penzlin 1991)
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A nerve can generate action potentials for a long time after the ion pumps have been

blocked. Only after hours does the electrochemical battery of the cell become

empty.

Beside the entire mechanism of membrane excitation, the translation of the

action potential along the axon of a nerve cell is of particular interest. In unmyelin-

ated axons the process of pulse transmission is based on a lateral spreading of

excitability by the electric field, generated by the excitation itself (see Fig. 3.37).

The action potential generated by excited proteins in the membrane triggers the

behavior of neighboring proteins. The impulse can proceed only in one direction,

because of the refractory period of several milliseconds which the proteins need

after an excitation to become excitable again.

Figure 3.30 illustrates the advantage of this kind of impulse propagation in

relation to the transmission of a voltage pulse in an electric cable. In contrast to

the cable, the time characteristics of the nerve pulse remains more or less

constant, even after a certain distance of transmission. Conversely of course, the

absolute velocity of pulse transmission in a cable is much faster than in an axon of

a nerve.

The advantage of simple electrical conductivity is used in many vertebrate, and

in a few invertebrate axons. In this case the axons are surrounded by Schwann cells
forming the myelin sheath as an electrically isolating layer. Such nerves are called

myelinated. This sheath is interrupted at intervals of some millimeters by so-called

nodes of Ranvier, i.e., unmyelinated regions. In the myelinated regions simple

electric conductivity of the pulse occurs, as in a cable. The nodes of Ranvier

represent membrane areas which are excitable in a normal way. If a certain node

of Ranvier is excited, then the pulse propagates by simple electric conduction along

the myelinated length and excites the subsequent node. This so-called saltatory
conduction is a form of pulse amplification leading to a faster transport of informa-

tion. In contrast to about 1 m/s in unmyelinated nerves, the pulse propagation in fast

myelinated nerves is up to 100 m/s.

In 1952 Hodgkin and Huxley, based on intensive experimental investigations on

squid axons, proposed a theoretical model of membrane excitation in nerves (Nobel

Prize 1963). Its form is of a purely kinetic nature and does not contain information

about concrete molecular mechanisms taking place in the membrane.

Fig. 3.30 The time course of

a voltage pulse which is set at

time t ¼ 0 at point x ¼ 0,

transmitted in an isolated

cable (blue lines) and in an

unmyelinated nerve (red
lines)
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The basic equation describes the kinetics of the current in an electrical circuit,

similar to the scheme in Fig. 3.27. The current density (j) in such a system can be

described by the following equation:

j ¼ C0 dðDcMÞ
dt

þ ðDcM � DcKÞG0
K þ ðDcM � DcNaÞG0

Na (3.194)

DcM is the electrical membrane potential, whereas the symbols DcK and DcNa

indicate the Nernst potentials of potassium and sodium according to Eqs. 3.191 and

3.192. C0 is the capacity of the membrane, and GK
0 and GNa

0 the potassium and

sodium conductivities, always corresponding to a unit of area in the membrane. The

conductivity of the membrane for individual ions cannot be measured electrically

but can be obtained from experiments in which the kinetics of radioactive tracer

ions is measured.

The first term of Eq. 3.194 gives the current density which leads to the charge of

the membrane capacitor (Fig. 3.27). The following terms represent the current

densities associated with potassium and sodium fluxes.

The conductivities GK
0 and GNa

0 are not constant, but functions of the electric

field in the membrane, resp. of the membrane potential. The potentiometers in

Fig. 3.27, therefore, are controlled directly by DcM. From the molecular point of

view this means that these conductivities are the result of voltage-dependent

channels. It is therefore necessary to make statements about field dependents of

these conductivities, i.e., the functions GK
0(DcM) and GNa

0(DcM).
To describe the behavior of these channels, Hodgkin and Huxley used a statisti-

cal approach. They assumed that the channels can obtain only two discrete states:

“open,” or “closed.” The phenomenological conductivities (GK
0, GNa

0) then repre-

sent the average of the functional states of a large number of such channels. If all of

the channels are open then the maximal conductivities G0
K max and G0

Na max are

established.

Furthermore, it is assumed that the potassium channel will be open when exactly

four events take place simultaneously, all having the same probability of occur-

rence (n). The real nature of these events is not explained. It could be, for example,

the presence of four potassium ions near the entrance of the channel.

This assumption leads to the following equation:

G0
K ¼ GK maxn

4 (3.195)

The probability n is a function of time and can be characterized by rate constants

an and bn as follows:

dn

dt
¼ anð1� nÞ � bnn (3.196)

Concerning the sodium permeability, it is assumed that the channel will be open

when three events, each having the probability m occur simultaneously, and if
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another inhibitory event having the probability h has not taken place. This leads to

the expression

G0
Na ¼ GNa maxm

3h (3.197)

For the parameters m and h also kinetic equations can be written:

dm

dt
¼ amð1� mÞ � bmm (3.198)

dh

dt
¼ ahð1� hÞ � bhh (3.199)

The voltage dependence of the channels is proposed to be the result of influences

on the rate constants a and b:

an ¼ 0;01ðDcþ10Þ

e
Dcþ10

10 �1

bn ¼ 0; 125 e
Dc
80

am ¼ 0;1ðDcþ25Þ

e
Dcþ25

10 �1

bm ¼ 4 e
Dc
18

ah ¼ 0; 7e
Dc
20 bh ¼ 1

e
Dcþ30

10 þ1

(3.200)

(In these equations, the potentials are in mV!)

These equations were obtained from a purely empirical approach, analyzing

measured parameters.

It is easy to see that if the relations given in Eq. 3.200 are substituted into

Eqs. 3.196, 3.198, and 3.199, a system of nonlinear differential equations will be

obtained. The solution of these equations can be substituted into Eqs. 3.195 and

3.197, and eventually, into the basic Eq. 3.194. An analytical solution of this system

of differential equations is not possible. Computer simulations of these equations,

however, indicate a good accordance with experimental results.

Figure 3.31 shows the calculated time courses for the changes in sodium and

potassium conductivities at different membrane potentials. This also corresponds

well with experimental findings. These curves illustrate the mechanism described

above for the generation of an action potential. The conductivities from Fig. 3.31

illustrate the time-dependent changes of the potentiometers shown in Fig. 3.27,

whereas the conductivities are directly proportional to the permeabilities. Within

the first millisecond following the stimulus, the sodium potential is dominant

because of the rapid increase in GNa
0 (and thus PNa). This will then be counteracted,

by the increasing potassium potential.
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The Hodgkin–Huxley model and the corresponding measurements have

provided a benchmark in our understanding of cellular excitability. New experi-

mental techniques leading to more precise data nevertheless require some revisions

of these approaches. So for example the mechanisms for the voltage-gated potas-

sium and sodium ion currents have been superseded by more recent formulations

that more accurately describe voltage-clamp measurements of these components.

Especially its current–voltage relation has a nonlinear dependence upon driving

force, corresponding to the Goldman–Hodgkin–Katz relation, rather than the linear

approach used by Hodgkin and Huxley.

The original formulations of G0
Na and G0

K by Hodgkin and Huxley nevertheless

continue to be used even though they do not adequately fit voltage-clamp

measurements. The deviations between the m3h and n4 models (Eqs. 3.195 and

3.197), and the corresponding sodium and potassium currents do not appear to be

eminently significant. Models that do describe these circumstances more precisely

are more complex, which limits their practical utility in computational neuroscience.

Further Reading

Clay 2005; Hodgkin and Huxley 1952; Huxley 2002.

3.4.5 Molecular Aspects of Membrane Transport

In Sect. 3.4.1 various types of membrane transporters were characterized only in a

phenomenological way. Now we will direct our attention to their structure and

function. In fact, charged hydrophilic ions and molecules can penetrate the lipid

membrane of cells and organelles only with the help of these mediators, usually

proteins, the polypeptide chains of which span the lipid bilayer several times. In the

last decades the molecular structure of a large number of these proteins has been

revealed thanks to X-ray crystallography. In this way, the former more or less

Fig. 3.31 The time dependence of the conductivities GK
0 and GNa

0 for various membrane

potentials, corresponding to the theory of Hodgkin and Huxley
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mechanistic models of transport processes were replaced by more realistic molecu-

lar mechanisms.

In general, the following properties of transporters require an answer from these

molecular considerations:

– Their extremely high selectivity including the phenomena of dehydration and

rehydration of hydrophilic species in the process of membrane permeation.

– The mechanism of coupling between transport and the energy supporting bio-

chemical reactions.

– The mechanisms of transport regulation by ligands and the transmembrane

potential.

In 1998 MacKinnon unlocked the three-dimensional molecular structure of a

potassium channel, a success which was awarded with the Nobel Prize in 2003.

Such K+ channels are found in bacterial as well as in eukaryotic cells of plants and

animals, which are related members of a single protein family. Their amino acid

sequences are easy to recognize because they contain a highly conserved segment

called the K+ channel signature sequence.

Let us answer some of the questions noted above using this extensively

investigated example. The pore of this transporter is comprised of four identical

subunits that encircle the central ion conduction pathway (two of them are depicted

in Fig. 3.32). Each subunit contains two fully transmembrane a-helices, and a tilted
pore helix that runs half way through the membrane. The hydrated K+ ion, entering

this channel from the cytoplasmatic side, first remains in the hydration state in a

water-filled cavity with a diameter of 1 nm near the midpoint of the membrane.

This cavity helps the K+-ion to overcome the electrostatic repulsion that it would

Fig. 3.32 The molecular structure of the KcsA channel. Only two subunits of this tetrameric

molecule are shown. According to the position of the intracellular ends of the inner helices forming

the gate, it is shown in a closed state (From MacKinnon 2003, modified)
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normally experience when moving from the cytoplasmatic water phase into the

low dielectric membrane environment. By allowing it to remain hydrated at the

membrane center, and by directing the C-terminal negative ends of the protein

helices toward the ion pathway, it becomes stabilized at the membrane interior.

After this it enters the selectivity filter which contains four evenly spaced layers of

carbonyl oxygen atoms, and a single layer of threonine hydroxyl oxygen atoms,

which create four K+ binding sites. In fact, on average only two K+ ions are present

at a given time in these four positions, always separated by one water molecule. It

is very important that the arrangement of these protein oxygen atoms is very

similar to that of water molecules around the hydrated K+ ion. In this way the

energetic cost of dehydration is minimized. Furthermore, a part of the binding

energy is used for conformational changes of the proteins, which also is a prereq-

uisite for the high conduction. In fact, the flux achieves up to 108 ions per second.

This rate is large enough for sensitive amplifiers to record the electric current of a

single channel. Na+ ions cannot enter this filter because of their different crystal

structure.

The gate of the channel is represented by a helix bundle near the intracellular

membrane surface. In the closed position, as depicted in Fig. 3.32, the pore

narrows to about 0.35 nm and is lined with hydrophobic amino acids, creating an

effective barrier to the hydrophilic ions. This structure seems to be representative

for many different potassium channels, irrespective of the stimulus that causes the

pore to be in closed or open state. The conformational changes of these polypep-

tide chains that open and close the channel gate occur on the order of 102 times per

second.

As discussed in previous chapters the membrane potential, and consequently the

membrane electric field and its modification forms not only the basic principle of

nerve and muscle excitation but regulates various functions in nearly all cells. This

requires proteins, especially transporters, embedded in the membrane that sense

alterations of this field and transform them into various cellular signals.

It is easy to imagine how an electric charge or an electric dipole can be

reorientated within a protein when the field is changed. This can produce a

conformational change in the protein that may regulate its function. The move-

ment of the charge or the dipole induces a transient current (gating current) that
can be measured experimentally and provides direct information about such

conformational changes. The extent of the charge movement depends on the

magnitude of the charge and the strength of the electric field in the region

where the charge moves. In Sect. 2.2.1 (Fig. 2.15) as a crude estimation, this

field strength was indicated to be of the order of 107 V m�1. In fact, the exact

value of this parameter near the corresponding charges or dipoles is unknown. In

some cases the field can be concentrated to a narrow region around this location.

Furthermore, the dielectric constant of this region inside the molecular structure is

unknown.

The most extensively investigated voltage-gated channel is the so-called Shaker

K+ channel which can be expressed at a high density in Xenopus oocytes. It was
isolated fromDrosophila melanogaster and was named after the shaking that the fly
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undergoes under anesthesia in its absence. Measurement of the gating current by

patch-clamp techniques indicates that 13 electron equivalent charges per molecule

are moving in this case. On the basis of the crystal structure of this protein, the so-

called paddle model was proposed. It is assumed that voltage-gating charges are

located on a hydrophobic helix-turn-helix structure, the so-called S4-segment,

which can move within the membrane near the protein–lipid interface according

to the direction of the electric field. Recently an S4-type sensor has been found in a

voltage-dependent phosphatase, suggesting that this type of sensor may be modular

and might have been incorporated into other types of proteins.

The kinetic model of nerve excitation as discussed in the previous section

requires a particular sequence of opening and closing of potassium and sodium

channels controlled by the membrane potential. Probably the four voltage-sensor

domains of these channels react with individual time courses.

Although K+ channels are excellent prototypes for voltage-gated channels, there

are several other types of membrane proteins that differ in function, selectivity,

regulation, kinetics, and voltage dependence. So for example a G-protein coupled

muscarinic receptor has been found, in which a voltage-sensor is an integral part of

the structure. It is expected that many other sensors will be discovered in the near

future. More structures and biophysical analyses are still needed for a full molecular

understanding of the function of these voltage sensors.

In contrast to the relatively simple mechanisms of channels, the pumps, and the

co-transport systems require more functional elements, and the transport

mechanisms demand more conformational changes in the corresponding transport

protein. Especially the energy release by hydrolyzing ATP, and its coupling to ion

movement needs a series of protein conformations. The first atomic-resolution

structure of an ion pump was published in 2000 for the Ca-ATPase by Toyoshima

et al. It shows an integral membrane protein with a large extended cytosolic part. In

spite of the enormous progress of research in this field, a number of questions,

especially concerning the Na-K-ATPase, are still open. The required conforma-

tional changes that accompany these transport processes mean that their speed is

much slower than processes of channel transport.

The progress in determining the molecular structures of these channels has

greatly facilitated the theoretical modeling and numerical simulation of the ion

transport process itself. The most detailed description is based on the concept of

molecular dynamics (MD). In this case microscopic forces of interactions

between the penetrating ion and all atoms of the channel are calculated based

on the classical Newton’s equation of motion. This leads to trajectories of all the

atoms in the system. In recent years, this approach has been used to simulate an

increasing number of channels. Although this is the most detailed and accurate

approach, it is limited by its shortcomings in quantitatively characterizing a large

system, and its application depends considerably on advanced computational

techniques.

Simpler and computationally less expensive of course are continuum models

based on macroscopic or semimicroscopic continuum calculations like the

Poisson–Nernst–Planck (PNP) approach. They, however, include a number of
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